Derivative Superconvergence of Rectangular Finite Elements for the Reissner-Mindlin Plate
نویسندگان
چکیده
The nite element method with rectangular meshes for the Reissner-Mindlin plate is analyzed. For a plate with thickness bounded below by a positive constant (moderately thick plate), derivative superconvergence of the nite element solution at the Gaussian points is justiied and optimal error estimates for both rotation and displacement are established.
منابع مشابه
A Finite Volume Formulation for the Elasto-Plastic Analysis of Rectangular Mindlin-Reissner Plates, a Non-Layered Approach
This paper extends the previous work of authors and presents a non-layered Finite Volume formulation for the elasto-plastic analysis of Mindlin-Reissner plates. The incremental algorithm of the elasto-plastic solution procedure is shown in detail. The performance of the formulation is examined by analyzing of plates with different boundary conditions and loading types. The results are illustrat...
متن کاملSuperconvergence in Projected-Shear Plate-Bending Finite Element Methods
Projected-shear nite element methods for periodic Reissner-Mindlin plate model are analyzed for rectangular meshes. A projection operator is applied to the shear stress term in the bilinear form. Optimal error estimates in the L 2-norm, H 1-norm, and the energy norm for both displacement and rotations are established and gradient superconvergence along the Gauss lines is justiied in some weak s...
متن کاملA Superconvergent Finite Element Scheme for the Reissner-mindlin Plate by Projection Methods
The Reissner-Mindlin model is frequently used by engineers for plates and shells of small to moderate thickness. This model is well known for its “locking” phenomenon so that many numerical approximations behave poorly when the thickness parameter tends to zero. Following the formulation derived by Brezzi and Fortin, we construct a new finite element scheme for the Reissner-Mindlin model using ...
متن کاملTwo lower order nonconforming rectangular elements for the Reissner-Mindlin plate
In this paper, we propose two lower order nonconforming rectangular elements for the Reissner-Mindlin plate. The first one uses the conforming bilinear element to approximate both components of the rotation, and the modified nonconforming rotated Q1 element to approximate the displacement, whereas the second one uses the modified nonconforming rotated Q1 element to approximate both the rotation...
متن کاملOn Mixed Finite Element Methods for the Reissner-mindlin Plate Model
In this paper we analyze the convergence of mixed finite element approximations to the solution of the Reissner-Mindlin plate problem. We show that several known elements fall into our analysis, thus providing a unified approach. We also introduce a low-order triangular element which is optimalorder convergent uniformly in the plate thickness.
متن کامل